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Simple Summary: This study investigates the set of proteins that comprise a Vibrio ordalii strain
Vo-LM-18 and its outer membrane vesicles (OMVs), which are involved in the pathogen’s interaction
with fish hosts, especially salmonids. Vibrio ordalii is a major cause of vibriosis, a disease that results
in significant mortality in fish farms, a relevant industry in Chile. By analyzing the proteins expressed
by both the bacteria and their OMVs, this research identifies key proteins linked to virulence, iron
uptake, and cellular communication. The findings suggest that OMVs carry virulence factors that
could aid in the pathogen’s ability to infect and persist in fish. These vesicles may also contribute to
the pathogen’s survival in harsh environments, such as during host immune responses. This study
provides new insights into bacterial pathogenesis and highlights potential targets for developing
treatments or vaccines to combat infections in aquaculture.

Abstract: Vibrio ordalii is the causative agent of atypical vibriosis in salmonids cultured in Chile. While
extensive research provides insights into V. ordalii through phenotypic, antigenic, and genetic typing,
as well as various virulence mechanisms, proteomic characterization remains largely unexplored.
This study aimed to advance the proteomic knowledge of Chilean V. ordalii Vo-LM-18 and its OMVs,
which have known virulence. Using Nano-UHPLC-LC-MS/MS, we identified 2242 proteins and
1755 proteins in its OMVs. Of these, 644 unique proteins were detected in V. ordalii Vo-LM-18, namely
156 unique proteins in its OMVs and 1596 shared proteins. The major categories for the OMVs
were like those in the bacteria (i.e., cytoplasmic and cytoplasmic membrane proteins). Functional
annotation identified 37 biological pathways in V. ordalii Vo-LM-18 and 28 in its OMVs. Proteins
associated with transport, transcription, and virulence were predominant in both. Evident differences
in protein expression were found. OMVs expressed a higher number of virulence-associated proteins,
including those related to iron- and heme-uptake mechanisms. Notable pathways in the bacteria
included flagellum assembly, heme group-associated proteins, and protein biosynthesis. This pro-
teomic analysis is the first to detect the RTX toxin in a V. ordalii strain (Vo-LM-18) and its vesicles. Our
results highlight the crucial role of OMVs in the pathogenesis and adaptation of V. ordalii, suggesting
use as potential diagnostic biomarkers and therapeutic targets for bacterial infections.

Keywords: vibriosis; proteome; salmonids; OMVs

1. Introduction

Vibrio ordalii, formerly Vibrio anguillarum biovar II [1], is the causative agent of atypical
vibriosis, a hemorrhagic septicemia in several fish species, mainly in salmonids [2]. This
bacterium is a Gram-negative, motile, rod-shaped microorganism that ferments glucose
and oxidase, is catalase positive, and is sensitive to the vibriostatic agent O/129 [3]. Since
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2004, V. ordalii has been reported as responsible for outbreaks with high mortalities in
populations of Atlantic salmon (Salmo salar), Pacific salmon (Oncorhynchus kisutch), and
rainbow trout (Oncorhynchus mykiss) cultured in southern Chile [4,5]. Fish affected by
V. ordalii show necrosis and hemorrhagic lesions in the tissues surrounding the infection
sites, including the ventral fin and anal pore [6].

Despite V. ordalii and V. anguillarum being very closely related genomically, especially
the serotype O2 isolates [7,8], until now, most research has been carried out to elucidate the
virulence factors and pathogenesis of V. anguillarum [7,9]. In the case of V. ordalii, the main studies
have focused on phenotypic, serotype, and genetic differences among isolates [1,4,5,10], but
pathogenesis is not fully understood. This notwithstanding, properties for adhesion, colonization,
and invasion [11]; exotoxins [6]; cell-surface components or capsular material [11,12]; and iron-
uptake systems [13–15] have been reported. All of these features have been confirmed by the
presence of numerous likely genes in the genome of the strain type V. ordalii ATCC 33209T [7].

More recently, we delved into some characteristics that could be involved in the
virulence mechanisms of V. ordalii; in vitro findings support the facultative intracellular
behavior of this pathogen [16] and have demonstrated that V. ordalii produce and release
outer membrane vesicles (OMVs) under normal growth conditions [17]. In addition,
purified OMVs demonstrate hemolytic enzyme activity, while protein analysis has detected
a 38 kDa protein that would correspond to the OmpU protein found in the membrane for
V. anguillarum [18], which is associated with pathogen adaptation to the host, increasing
resistance to bile and favoring biofilm formation during V. anguillarum infection [19].

Little to no information is available regarding the proteomic characterization of
V. ordalii. Therefore, the aim of the present study was to further proteomic knowledge of the
Chilean V. ordalii Vo-LM-18 and its vesicles. This strain has been broadly characterized by
our team, and our research constitutes the first report of a proteomic approach for studying
this fish pathogen.

2. Materials and Methods
2.1. V. ordalii Growth

In this study, the V. ordalii strain Vo-LM-18 and its OMVs were employed. This strain
was originally isolated from a vibriosis outbreak in Atlantic salmon, and different char-
acteristics associated with its virulence have been studied by our research group (e.g.,
cell-surface properties and iron-uptake mechanisms, among others) [11,15]. In addition,
strain Vo-LM-18 was selected due to the previous characterization of OMVs production [17].
Standard phenotypical procedures [5] and a previously described PCR protocol [20] con-
firmed strain Vo-LM-18 as V. ordalii. The bacterium was routinely cultivated under aerobic
conditions at 18 ◦C for 48 h in trypticase soya agar or broth (BD) with 1% (w/v) NaCl
(Winkler) (TSA-1 and TSB-1, respectively). Stock cultures were kept frozen at −80 ◦C in
Cryobank tubes (Mast Group, Liverpool, UK) or in TSB-1 with 15% (v/v) glycerol.

2.2. V. ordalii Cells and OMVs Isolation

The V. ordalii cells and OMVs were obtained from V. ordalii grown in a liquid culture.
Once the Vo-LM-18 colonies were grown, three pure colonies were used to prepare the
starting inocula in tubes containing 5 mL of TSB-1. Bottles with 800 mL of culture medium
were finally seeded with each inoculum of V. ordalii until a concentration of 0.2 at 620 nm in
a NanoQuant Microplate Spectrophotometer (Tecan, Seestrasse, Switzerland) was reached.
All experiments were performed in triplicate. Then, V. ordalii cells were removed by
centrifugation (10,000× g for 15 min at 4 ◦C) and washed four times with phosphate-
buffered saline 1X (pH 7.4) at 5000× g for 10 min at 4 ◦C to remove broth remnants. Then,
each cellular pellet was frozen at −80 ◦C until use.

The purity of strain Vo-LM-18 after centrifugation was confirmed by Gram stain-
ing, cell morphology, and PCR, as described above. The OMVs were obtained exactly
as described by Echeverría-Bugueño et al. [17]. The supernatant was filtered through a
0.45 µm and a 0.22 µm pore size consecutively (JETbiofill), and another round of ultra-
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centrifugation was performed at 125,000× g for 2 h at 4 ◦C. The pellet was recovered and
resuspended in milli-Q water with 1% protease inhibitor (Protease Inhibitor Cocktail Set I,
Animal-Free—Calbiochem). To collect high-purity OMVs, a new round of ultracentrifuga-
tion for 60 min was performed, and the pellet was resuspended in milli-Q water with 1%
protease inhibitor and stored at −80 ◦C. Furthermore, 5 µL of purified OMVs were grown
in TSB-1 agar to confirm all cells were eliminated during the process.

2.3. Scanning Electron Microscopy (SEM)

SEM was prepared according to Echeverría-Bugueño et al. [17], with slight modi-
fications. Bacteria and OMVs were fixed with 2.5% glutaraldehyde (Merck) in a 0.1 M
sodium cacodylate buffer (Sigma, CB, pH 7.4) for 60 min at room temperature. The samples
were deposited in a cover sheet treated with poly-L-lysine and dehydrated in a battery of
alcohols. Then, critical-point drying was performed (Critical point dryer HCP-2, Hitachi,
Tokyo, Japan). Unlike what was previously reported [17], we used coverslips instead of
cooper grids. The coverslips were deposited on sample holders previously covered with
carbon tape (EMS), and the samples were shaded with 1 nm gold palladium (Leica EM
ACE 200, Wetzlar, Germany). The images were obtained using AURIGA Compact-Field
scanning transmission electron microscopes (FESEM, STEM), a focus ion beam (FIB-SEM)
at 5.0 kV, and a working distance between 4 and 5 nm. Finally, the sizes of the bacteria and
OMVs were determined using the ImageJ software (NIH, https://imagej.nih.gov accessed
on 20 June 2024).

2.4. Protein Extraction for nLC-MS/MS

Each replicate of the Vo-LM-18 cells and OMVs suspension was lyophilized overnight.
Subsequently, each sample was resuspended in 500 µL of 8 M urea with 25 mM sodium
bicarbonate and sonicated for 1 min with 3 pulses of 9 s at 40% intensity. Finally, the
samples were centrifuged at 10,000× g for 10 min, discarding the pellet and storing the
supernatant at −80 ◦C.

2.5. Protein Extraction and Digestion for nLC-MS/MS

The proteins of each sample were subjected to precipitation using 5:1 v/v cold acetone
100% and incubated overnight at −20 ◦C; then, they were centrifuged at 15,000× g for
10 min; the supernatant was discarded, and the pellet was washed three times with acetone
at 90% v/v, dried in a rotary concentrator at 4 ◦C, and finally resuspended in 8 M urea with
25 mM of ammonium bicarbonate (NH4HCO3, pH 8.0). The proteins were quantified with
a Qubit protein assay, where 100 µg were reduced with 20 mM dithiothreitol for 60 min,
alkylated with 20 mM iodoacetamide in the dark for 60 min, diluted ten times with 25 mM
of ammonium bicarbonate pH 8.0, and digested with trypsin/LyC (Promega, Madison,
WI, USA) in a 1:50 ratio overnight at 37 ◦C. Peptides were cleaned using Pierce C-18
Spin Columns (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions, and the eluted peptides were dried using a rotary concentrator at 4 ◦C,
resuspended in 2% acetonitrile with 0.1% (v/v) formic acid (Merck, Darmstadt, Germany),
and quantified using a Direct Detect Spectrometer (Merck Millipore, Darmstadt, Germany).

2.6. Liquid Chromatography

A nanoElute® liquid chromatography system (Bruker Daltonics, Billerica, MA, USA)
was used, and peptides (200 ng of digest) were separated within 90 min at a flow rate of
400 nL/min on a reversed-phase column Aurora Series CSI (25 cm × 75 µm i.d. C18 1.6 µm)
(IonOpticks, Fitzroy, Australia) at 50 ◦C. Mobile phases A and B were water and acetonitrile
with 0.1% (v/v) formic acid, respectively. The B percentage was linearly increased from
2 to 17% within 57 min, followed by an increase to 25% B within 21 min and further to 35%
within 13 min, followed by a washing step at 85% B and re-equilibration.

https://imagej.nih.gov
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2.7. The timsTOF Pro Mass Spectrometer

All samples were analyzed using three biological replicates per condition using the
hybrid trapped ion mobility spectrometry (TIMS) quadrupole time-of-flight mass spectrom-
eter (MS) (TIMS-TOF Pro, Bruker Daltonics) through a CaptiveSpray nano-electrospray
ion source. The MS was operated in data-dependent mode for the ion mobility-enhanced
spectral library generation. We set the accumulation and ramp time at 100 ms each and
recorded mass spectra in the range from m/z 100–1700 in positive electrospray mode. Ion
mobility was scanned from 0.6 to 1.6 Vs/cm2. The overall acquisition cycle of 1.16 s com-
prised one full TIMS-MS scan and ten parallel accumulation-serial fragmentation (PASEF)
MS/MS scans.

2.8. Database Searching

Tandem mass spectra were extracted by TIMS Control v.2.0. Charge state deconvolution
and deisotoping were not performed. All MS/MS samples were analyzed using PEAKS
Studio (Bioinformatics Solutions, Waterloo, ON Canada; v10.5 (20 November 2019)) [21,22].
PEAKS Studio was set up to search the UniProt_SwissProt Vibrio ordalii database (3390 entries)
assuming the digestion enzyme trypsin. PEAKS Studio was searched with a fragment ion
mass tolerance of 0.050 Da and a parent ion tolerance of 50 PPM. Carbamidomethyl of cysteine
was specified in PEAKS Studio as a fixed modification. The deamidation of asparagine and
glutamine; the oxidation of methionine; acetyl of the n-terminus; and carbamoyl of lysine and
the n-terminus were specified in PEAKS Studio as variable modifications.

2.9. Label-Free Quantitation and Differential Expression Analysis

Individual identification reports from PEAKS were concatenated and resulting missing
values (NA) were imputed by MICE [23]. To determine which proteins were differentially
and significantly expressed in the treatments’ contrast, we applied a Wald test to data
with a Benjamini–Hochberg correction using Deseq2 [24]. Any protein associated with a
p-adjust < 0.05 was considered significant. The identification of Differentially Expressed
Proteins (DEPs) was carried out by comparing the expression ratio of proteins identified in
OMVs versus bacteria.

Graphical representations related to quantification results were created using the
statistical environment R [25] with EnhancedVolcano [26], Complex Heatmap v.2.0.0 [27],
GOplot [28], and R base packages. In addition, the prediction of the subcellular localization
of the proteins identified in OMVs and bacteria was carried out through PSORTb v3.0 using
default parameters [29].

Sequence protein annotation was performed by Sma3s [30] with default parameters.
The protein–protein interaction was carried out by mapping protein sequences against
Vibrio anguillarum in the STRING database [31]. The resulting network was imported and
processed in Cytoscape v.3.91 [32].

3. Results and Discussion
3.1. Purification of OMVs and Characterization of the Bacterial/OMV Proteome

To confirm the purity of V. ordalii Vo-LM-18 cells and its OMVs after isolating each
component, they were visualized using SEM. V. ordalii Vo-LM-18 cells exhibited the classic
morphology of this species, i.e., bacillus shape with flagella (Figure 1a) and, with an
average size of 1.24 ± 0.19 µm (Figure 1b), consistent with the values obtained in previous
studies for this strain [17]. The bacteria, during exponential growth, constitutively released
vesicles into the external medium (Figure 1a). Additionally, the SEM of the OMVs purified
by ultracentrifugation revealed pure vesicles without the presence of bacteria or debris
(Figure 1c), showing a heterogeneous distribution with closed elliptical and/or spherical
shapes. The vesicles observed had an average size of 218.228 ± 62 nm with a range between
78 and 218.3 nm (Figure 1d). It is important to note that these OMVs were found in the
crude extract of the V. ordalii culture, so our study did not select subpopulations based on
sizes, as indicated by Crescitelli et al. [33].
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Figure 1. Characteristics of Vibrio ordalii Vo-LM-18 and its OMVs. SEM visualization of (a) the
bacteria and (c) its OMVs. SEM-determined size of (b) the bacterium and (d) OMVs, showing greater
heterogeneity in OMVs sizes vs. bacteria. Venn diagram illustrating proteins identified across each
replicate of (e) Vibrio ordalii Vo-LM-18 and (f) its OMVs. The arrowhead points to the OMVs.

To identify the proteome of V. ordalii Vo-LM-18 and its OMVs, peptides were quantified
and analyzed using nanoscale high-performance liquid chromatography coupled to tandem
mass spectrometry (nLC-MS/MS). Each experiment included three biological replicates
per sample type (V. ordalii Vo-LM-18 and OMVs), showing very similar protein values in
each case (Figure 1e,f). A total of 30,683.3 peptides were detected in the bacteria, resulting
in 2242 ± 106 proteins (Figure 1e), whereas a total of 17,749 peptides were evaluated in
the vesicles, resulting in 1754.7 ± 57 proteins (Figure 1f). This represented a reduction of
488 proteins in the vesicles compared to the bacteria from which they originated.

3.2. Cellular Distribution and Major Functions of the Proteome of V. ordalii and Its OMVs

Of the proteins identified in V. ordalii Vo-LM-18 and its OMVs, 644 and 156 unique
proteins were detected in each component, while 1596 proteins were shared (Figure 2a).
Using the PSORT prediction tool, a compartmental distribution of the identified proteins
was determined. In the case of strain Vo-LM-18, the most abundant category was cyto-
plasmic, comprising 47.2% of the proteins, followed by the cytoplasmic membrane with
23.3%. A similar percentage of proteins fell into the category of unknown localization
(23.9%) (Figure 2b). The major categories in the OMVs were the same as those detected
in the bacteria (Figure 2b), but with different percentages. Proteins in the unknown cat-
egory were more abundant (30.5%), followed by the cytoplasmic category at 29.3%, and
then the cytoplasmic membrane at 24.7%. Additionally, three other minor categories were
detected—outer membrane, extracellular, and periplasmic—with contributions of 7.5%,
4.6%, and 3.4%, respectively. Interestingly, it was observed that in OMVs, the proteins of
the outer membrane were more enriched compared to the bacteria, with 1.2% for V. ordalii
and 7.5% for OMVs.
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Figure 2. Proteomic and protein subcellular localization resources (PSORT) analyses of Vibrio ordalii
strain Vo-LM-18 and its OMVs. (a) Venn diagram showing the overlap of proteins identified in the
Vo-LM-18 strain and its OMVs. (b) Distribution of proteins by cellular compartment as predicted by
PSORT. (c) Functional categorization and grouping of proteins annotated by Gene Ontology.

When performing analysis of functional annotations by Gene Ontology at the level
of distribution into biological categories (Figure 2c), 37 and 28 biological pathways were
detected in V. ordalii Vo-LM-18 and its OMVs, respectively. The proteins associated with
transport, transcription, and virulence were predominant both in the bacteria and in the
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vesicles, while another 11 pathways were also shared, but with a value of 1 in the V. ordalii
Vo-LM-18 strain or its OMVs. It is interesting to note that both contained proteins as-
sociated with siderophore biosynthesis, enterobactin biosynthesis, DNA damage, and
rRNA processing. Specifically, piscibactin and vanchrobactin have been demonstrated
as siderophores, along with several iron uptake mechanisms based on heme utilization
in V. ordalii [14,15]. However, this was the first detection of proteins associated with en-
terobactin, a xenosiderophore originally described in Escherichia coli [34]. Its functional
relationship with the siderophore vanchrobactin has been previously reported in V. anguil-
larum [35] and other pathogens of the Vibrionaceae family [36,37]. On the other hand, 15 out
of the 28 biological pathways of the OMVs were not detected in the bacteria, including bac-
terial flagellum biogenesis, collagen degradation, luminescence, and quorum sensing. All
these have been associated with virulence mechanisms within the Vibrio genus, especially
in other fish pathogens [2,38,39].

3.3. Analysis of Differences and Similarities in the Proteome of V. ordalii Vo-LM-18 and Its OMVs

To assess differences between the proteomes of V. ordalii Vo-LM-18 and OMVs, we
conducted a principal component analysis (PCA). PCA involves reducing the dimension-
ality of the data in an unsupervised manner, aiming to observe if each condition forms
distinct groups and if they differ between conditions. Our analysis revealed well-defined
clusters for V. ordalii Vo-LM-18 and its OMVs, with component 1 explaining 81.19% of the
variance and component 2 explaining 8.27% (Figure 3a). This confirmed that the proteomes
of V. ordalii Vo-LM-18 and its OMVs exhibited qualitative and quantitative differences,
indicating distinct protein profiles.

The DEPs were represented on a heatmap (Figure 3b), which confirmed the homo-
geneity of the triplicates, and the robustness of the results obtained. The heatmap also
displayed the functional annotation and pathways of some proteins, especially those con-
sidered relevant for bacteria belonging to the Vibrio genus, with an abundance criterion
ranging from −2 to 2. When comparing between strain Vo-LM-18 and its OMVs, differ-
ences between both samples were evident, showing that the OMVs expressed a higher
number of virulence-associated proteins, including iron- and heme- mechanisms related to
membrane proteins (Figure 3b). Additionally, the OMVs contained proteins involved in
flagellum biosynthesis, lipopolysaccharide synthesis, and membrane degradation, as well
as signal-associated and lipid-binding proteins, ribosomal proteins, and secreted proteins.
Regarding the predominant pathways in the bacteria, the highlighted proteins included
those related to flagellum assembly, heme group-associated proteins, and those involved in
protein biosynthesis.

3.4. Label-Free Quantitation of Common Proteins Between V. ordalii and Its OMVs

We carried out label-free quantification analysis using the OMVs versus bacteria
relationship. A total of 211 statistically significant DEPs were obtained using a p-value
of 0.05% as a cut-off point of statistical significance. Results obtained 72 under-expressed
proteins and 139 over-expressed proteins, observing significant changes in the expression
of proteins in the order of 10 Log2 fold change (FC) between OMVs versus V. ordalii. The
protein that had a most dramatic difference in expression was an Iron (III) ABC transporter
ATP-binding Protein hitC, with a more than a 9-fold change in the Log2FC under-expressed
in OMVs with respect to V. ordalii Vo-LM-18. In turn, the transporter of toxin A was the
second most over-expressed protein in OMVs (rtxB), at seven times the Log2FC. With
respect to the bacteria, interestingly, toxin A (rtxA) was also over-expressed by at least
four times the Log2FC. It is important to note that this RTX toxin has not been previously
described in V. ordalii. However, it has been identified in other pathogenic species of the
Vibrio genus, including V. cholerae [40], V. vulnificus [41], and V. anguillarum [42], with the
latter being taxonomically close to V. ordalii [1]. Therefore, this proteomic analysis represents
the first detection of the RTX toxin in a V. ordalii strain (Vo-LM-18) and its vesicles.
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Figure 3. Graphic representation of the quantitative proteomic analysis of Vibrio ordalii Vo-LM-18 and
its OMVs. (a) Principal component analysis (PCA) of quantifiable proteins from Vibrio ordalii Vo-LM-18
and its OMVs. (b) Heatmap displaying significantly differentially expressed proteins (DEPs) common
to both the Vo-LM-18 strain and its OMVs, along with their functional distribution.

The two bacteria from the Vibrio genus in which the RTX toxins have been charac-
terized in the greatest depth are V. cholerae and V. vulnificus. In both pathogens, classic
functions associated with this group of toxins have been described, including participation
in colonization, adherence to host epithelia, a role in virulence, and a protective role against
the host phagocytosis response; interestingly, only V. cholerae had the capacity to generate
actin dimers as a possible entry pathway to the host and of pathogenicity [41,43,44]. In the
case described for V. anguillarum, a bacterium phylogenetically close to V. ordalii, one of
the main virulence factors of the pathogen, such as hemolysis, is related to a multi-copy
rtx operon that maintains activity even in the face of mutations [42]. In addition, in V.
anguillarum, the relationship between stressors such as temperature and iron availabil-
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ity and RTX toxins has been described; at low temperatures (15 ◦C), the hemolysin RTX
pore-forming toxin, T6SS2, increases its expression. This increase in T6SS2 expression goes
hand in hand with the expression of iron uptake components, such as the siderophore
piscibactin, so it also plays a role in the response to iron limitation [45]. Considering the
present study is the first description in V. ordalii Vo-LM-18, in vitro assays are required to
determine the influence of the toxins of the RTX family described in Table 1, not only in
the virulence of the pathogen but also in its response to host immunity and environmental
variations. In contrast, a flavohemoglobin protein related to the response to nitric oxide
stress showed a 1.78-fold decrease in expression (Log2FC). This under-expression may
give us an idea of the temporal role of OMVs. For example, upon infection of European
seabass (Dicentrarchus labrax) with V. anguillarum, iNOS levels are increased at the mucosal
level [46]. These prior findings suggest that OMVs are unable to trigger the anti-iNOS
response at the mucosal level and would act at the level of early infection. Additionally,
another group of four proteins associated with metabolism was observed. A selection of
54 proteins, with Log2(FC) values ranging from −1.78 to 9.27, included 37 over-expressed
and 17 under-expressed proteins (Table 1).

Additionally, the bacteria exhibited an over-expression of proteins associated with
metabolism, chemotaxis, and nutrient uptake. In terms of metabolism, the predominant
protein identified was FlgH, which is associated with flagellar movement along with MutH,
GspJ (equivalent to EspJ), and VipA/VipB [47–50]. For chemotaxis, the CheW protein
and a transmembrane receptor were found [51]. Regarding nutrient and metal uptake,
the identified proteins included the STAS domain associated with anion transporters, an
ATP-dependent iron transporter, and phospholipases [52].

The over-expressed proteins in V. ordalii Vo-LM-18 OMVs included a variety of proteins
that could contribute to their virulence and ability to survive in the host. For example, the
presence of proteins such as TolQ (4.3-fold over-expressed), associated with iron uptake,
suggests an important role in the acquisition of essential nutrients by the bacterium during
infection [53,54]. In addition, proteins such as OmpA and OppA, known to be involved in
host–cell attachment and antimicrobial resistance, respectively, indicate strategies that could
help V. ordalii evade host defenses and persist in the hostile environment of the intestinal
tract, as previously reported for V. anguillarum, V. harveyi, and V. furnissii [47,55,56].

Interestingly, many of the over-expressed proteins in V. ordalii Vo-LM-18 OMVs were
associated with virulence and antimicrobial resistance, suggesting that these vesicles could
play an important role in the spread of virulence factors and resistance genes within the
bacterial population and between different hosts. Furthermore, the presence of proteins
such as VgrG, associated with membrane perforation and phage infection [57–59], suggests
that OMVs could be used as vehicles for the delivery of toxins and virulence factors directly
into host cells, thereby enhancing the ability of the bacterium to colonize and cause disease.

The under-expressed proteins in V. ordalii Vo-LM-18 OMVs represented a selection
of proteins related to different cellular functions, all of which could have implications for
bacterial survival. For example, the presence of proteins associated with the replication
of genetic material, such as MutH, indicates that the bacterium retains these proteins to
maintain the integrity of its genome and ensure accurate replication during its lifecycle [50].
Similarly, proteins associated with chemotaxis, such as the methyl-accepting chemotaxis
protein, suggest that the bacterium needs these proteins to move toward or away from
certain environmental stimuli, which could be crucial to its ability to colonize and persist
in the host [60].

Overall, these findings highlight the importance of OMVs in the pathogenesis of
V. ordalii Vo-LM-18 and suggest that these vesicles could play a key role in the adaptation
and survival of the bacterium in different environments, including the host and aquatic
environment. However, further studies are needed to fully understand the role of OMVs in
the biology and pathogenesis of V. ordalii, as well as their potential as therapeutic targets or
biomarkers for the diagnosis of infection.
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Table 1. Summary of the predicted over-expressed (DEPs+) and under-expressed (DEPs−) proteins.
Fisher’s test with a p-value less than 0.05 was used as the cutoff for pathway enrichment.

Gene Name Description Molecular Function LogFC

hitC Iron(III) ABC transporter ATP-binding protein Iron uptake 9.27
rtxB RTX toxin transporter RtxB Virulence 7.13

waaF Heptosyltransferase II Biosynthesis LPS 6.75
hap/vvp Hemagglutinin/proteinase Hapa Virulence 6.53

VAA_00552 Drug and metabolite transporter Transport 6.50
vasL Type VI secretion system protein VasL Secretion system 5.71
letS Hybrid sensor histidine kinasa/response regulator LetA/S Regulation 5.44

VAA_02069 OmpF 100% homology with OmpA Virulence 4.94
rtxA RTX toxin RtxA Exotoxin/Virulence 4.81
smcL Exoenzyme sphingomyelinase-c Virulence 4.72

vgrG-3 Type VI secretion system effector VgrG-3 Secretion system/Toxin 4.68
VAA_01805 Phospholipase Colonization 4.54
VAA_01388 TolQ Cell division 4.37
VAA_02430 Zinc protease Pathogenicity/Virulence 4.32

msrA/B(pilB) Peptide methionine sulfoxide reductase MsrA Oxidative damage 4.25
VAA_01397 Peptidase domain M75 related to pili function Proteolysis 4.23
VAA_02130 PspC Shock response 4.21

flgM Negative regulator of flagellin synthesis FlgM Biosynthesis flagellin 3.97
lapA Probable Lipopolysaccharide A assembly protein Biosynthesis LPS 3.79

VAA_02321 Endochitinase Nutrient uptake 3.67
acfB Accessory factor AcfB for intestinal colonization Colonization 3.27
per Perosame synthetase from a unusual LPS sugar Biosynthesis LPS 3.27

fbpC Iron(III) ABC transporter ATP-binding protein Iron uptake 3.26
VAA_03250 OppA Uptake of peptides 3.16

flgP Vibrio-specific flagellar H-ring component FlgP Motility 3.04
entF Enterobactin synthase, multienzyme complex component Iron uptake 2.94
motX Sodium-type flagellar protein MotX Motility 2.74

VAA_02157 IpgD Colonization 2.62
sopB/sigD Type III secretion system effector SopB Secretion system 2.62
VAA_02312 Glucosidase Carbohydrates biosynthesis 2.58

flgD Flagellar basal-body rod modification protein FlgD Motility 2.33
irp1 Yersiniabactin biosynthetic protein Irp1 Iron uptake 2.23

ccmA ABC transporter Cytocromo c Biogenesis 2.18
bauE Ferric siderophore ABC transporter protein BauE Iron uptake 2.18
cdpA Cyclic di-GMP phosphodiesterase CdpA Regulation 2.16
tcpI Negative regulator of the major pilin TcpA Motility 2.02
ectA L-2,4-Diaminobutyric acid acetyltransferase Amino acid biosynthesis 1.70
flgH Flagellar L-ring protein FlgH Motility −6.21

VAA-01413 STAS domain Anion transporter −6.15
tcpI Regulator of the major pilin TcpA Adherence −5.66

mutH MutH DNA repair −4.57
VAA_03003 ATP-dependent iron transport protein Iron uptake −4.20
VAA_03329 Phospholipase Nutrient uptake/Virulence −3.59

mam7 Multivalent adhesion molecule MAM7 Adherence −3.50
VAA_01876 Paraquat-inducible B protein Stress response −3.50

cheW Purine-binding chemotaxis protein CheW Chemotaxis −3.47

clpV1 Protein that recycles VipA/VipB tubules and prevents
non-productive tubule formation Secretion system −3.46

VAA_02980 Chemotaxis methyl acceptor protein Chemotaxis −3.36
VAA_01345 NorM protein Multidrug efflux −3.30

epsJ Type II secretion system minor pseudopilin GspJ Motility −2.98
fleQ Pivotal role in promoting higher-order functional oligomers Regulation −2.57

pchA Transmembrane signaling receptor activity Chemotaxis −1.89
cyaB Cyclolysin secretion ATP-binding protein Cya Exotoxin −1.84

VAA_00966 Flavohemoglobin Oxidative stress −1.78

3.5. Analysis of Pathways and Co-Expression Through DEP Networks

After the functional annotation of the proteins, we performed network analysis where
changes were observed in different metabolic pathways related to primary metabolism
and, in turn, to virulence factors (Figure 4). In fact, the co-expression networks in V. ordalii
Vo-LM-18 versus OMVs further reinforced the observations made in the heatmap (Figure 4).
For instance, pathways whose proteins were over-expressed to a greater extent were related
to iron uptake and virulence factors such as exonucleases and hemolysins. In contrast,
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pathways whose proteins were under-expressed were associated with metabolic processes
such as transcription, signaling, and the transport of molecules such as sodium (Figure 4).
As seen, these results pointed to an increase in pathways related to bacterial virulence
and invasion.
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4. Conclusions

Our findings reveal significant differences between the proteomes of V. ordalii strain
Vo-LM-18 and its OMVs, highlighting a higher abundance of virulence and transport
proteins in OMVs. For example, the over-expression of proteins such as TolQ suggest a
role in host–cell infection and virulence. In contrast, the under expression of proteins such
as MutH in OMVs suggests adaptations in the survival strategy of V. ordalii by shifting
roles associated, for example, with transcription. These results underscore the crucial role
of OMVs in the pathogenesis and adaptation of V. ordalii, suggesting their potential as
diagnostic biomarkers and therapeutic targets for bacterial infections.
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