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Abstract 

Background  Determining the postmortem interval (PMI) accurately remains a significant challenge in forensic 
sciences, especially for intervals greater than 5 years (late PMI). Traditional methods often fail due to the extensive 
degradation of soft tissues, necessitating reliance on bone material examinations. The precision in estimating PMIs 
diminishes with time, particularly for intervals between 1 and 5 years, dropping to about 50% accuracy. This study 
aims to address this issue by identifying key protein biomarkers through proteomics and machine learning, ultimately 
enhancing the accuracy of PMI estimation for intervals exceeding 15 years.

Methods  Proteomic analysis was conducted using LC–MS/MS on skeletal remains, specifically focusing on the tibia 
and ribs. Protein identification was performed using two strategies: a tryptic-specific search and a semitryptic 
search, the latter being particularly beneficial in cases of natural protein degradation. The Random Forest algorithm 
was used to model protein abundance data, enabling the prediction of PMI. A thorough screening process, combin‑
ing importance scores and SHAP values, was employed to identify the most informative proteins for model’s training 
and accuracy.

Results  A minimal set of three biomarkers—K1C13, PGS1, and CO3A1—was identified, significantly improving 
the prediction accuracy between PMIs of 15 and 20 years. The model, based on protein abundance data from semit‑
ryptic peptides in tibia samples, achieved sustained 100% accuracy across 100 iterations. In contrast, non-supervised 
methods like PCA and MCA did not yield comparable results. Additionally, the use of semitryptic peptides outper‑
formed tryptic peptides, particularly in tibia proteomes, suggesting their potential reliability in late PMI prediction.

Conclusions  Despite limitations such as sample size and PMI range, this study demonstrates the feasibility of com‑
bining proteomics and machine learning for accurate late PMI predictions. Future research should focus on broader 
PMI ranges and various bone types to further refine and standardize forensic proteomic methodologies for PMI 
estimation.
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Background
The postmortem interval (PMI) is the time from an 
individual’s death until the discovery of their corpse [1]. 
Throughout this period, the cadaver undergoes changes 
influenced by various biotic and abiotic factors, resulting 
in the decomposition of the cadaver as a dynamic ecolog-
ical process [2–4]. Precisely determining PMI poses chal-
lenges in forensic sciences [5]. PMI estimation accuracy 
relies on both the time since death and the methodologies 
used. Research indicates that the precision in estimating 
intervals up to 24 h is approximately 90% but decreases 
significantly to around 50% for PMI intervals between 1 
and 5 years [6]. For intervals greater than 5 years, referred 
to hereafter as ‘late PMI,’ there are no standardized 
methods available [7]. This gap stems largely from the 
extensive degradation of soft tissues, making traditional 
methods ineffective [8] and leading to reliance on bone 
material examinations [9]. Errors in determining PMI can 
compromise the outcomes of criminal investigations [10], 
playing a critical legal role in pinpointing the exact timing 
of a crime. This helps in placing the individuals involved, 
corroborating witness statements, filtering evidence, and 
assessing the potential expiration of the statute of limita-
tions for a crime [11]. Therefore, the development of reli-
able and accurate methods to estimate PMI from skeletal 
remains is of great importance in forensic science.

In the recent years, proteomics has recently emerged 
as a promising tool for determining the PMI through the 
characterization of protein degradation that may serve as 
biomarkers both in soft tissue and bone [12–16]. This is 
especially relevant in cases where soft tissues have largely 
degraded. While bone proteomics at early PMI (< 5 years) 
has been characterized and conclusive proteomic bio-
markers have been suggested, the application of prot-
eomics for late PMI remains underdeveloped.

Franceschetti et al. [17] have recently reviewed the state 
of late PMI estimation, emphasizing the significant chal-
lenges posed by factors like environmental conditions 
and the lack of standardized molecular methods. While 
radiocarbon dating (C14) has been the gold standard in 
archaeology, it is less practical in forensic contexts. Pro-
teomics, however, offers a more feasible approach due to 
its ability to detect degradation patterns in bone proteins 
over extended time intervals. Over the past two dec-
ades only a handful of studies have aimed to unravel the 
molecular and biochemical changes that occur in bone 
during both early and late PMI [18–21].

These studies have shown that: (i) the rate of pro-
tein degradation is non-linear, with rapid degradation 
occurring during the initial months following death; (ii) 
the type of bone plays a crucial role in predicting PMI, 
as the morphology and vascularization of bones affect 
the rate of degradation; and (iii) certain proteins are 

more resistant to degradation than others. It has been 
demonstrated that protein degradation accelerates dur-
ing the first 2  months postmortem, primarily affecting 
blood-related and cytoplasmic proteins. After this initial 
phase, the proteome stabilizes, and further degradation 
slows down [19]. This non-linear pattern of degradation 
is particularly important in understanding the temporal 
dynamics of PMI estimation.

Moreover, the stability of the proteome can vary sig-
nificantly depending on the bone morphology. Bones that 
are highly porous and vascularized, such as the iliac crest 
or rib, tend to exhibit faster degradation, whereas bones 
that are densely cortical and structurally compact, such 
as the tibia, are more resistant to proteome degradation 
[20]. The differential proteome stability between bone 
types underscores the importance of selecting appropri-
ate bone samples for accurate PMI estimation in forensic 
contexts.

Notably, only one study has differentiated bone pro-
teomes from PMI intervals shorter or greater than 
12  years [21]. This work pinpoints that blood-, plasma-
related and cytoplasmic proteins are predominant in 
shorter intervals (< 12  years PMI), while matrix-related 
proteins dominate at longer intervals (> 12  years PMI). 
This finding highlights the critical role of bone matrix 
proteins in PMI estimation, as these proteins interact 
with hydroxyapatite crystals—the inorganic component 
of bone. These crystals possess amphoteric properties, 
enabling them to bind both acidic and basic proteins [22]. 
As a proof of concept, it has been documented that pro-
teins identified in late PMI are enriched in acidic amino 
acids [21], suggesting that the interaction between bone 
matrix and proteins serves as a protective mechanism 
against degradation. This underscores the potential of 
matrix-related proteins as reliable biomarkers for late 
PMI [21]. To develop accurate and reliable strategies 
for PMI estimation, further comprehensive profiling of 
matrix-related proteins across different bone types, dep-
osition environments, and late PMI ranges are necessary.

Despite the promising advancements in PMI estima-
tion, there remains a clear need for biomarkers and 
methods capable of resolving shorter intervals within late 
PMI. Machine learning (ML) algorithms—which excel 
in analyzing complex datasets like those generated from 
proteomics—offer a potential solution for enhancing the 
accuracy of PMI predictions. In recent years, scientists 
have successfully applied ML modeling to predict early 
PMI based on microbial and entomological community 
succession after death [23]. These studies have achieved 
prediction accuracies greater than 90%, although they 
cover PMIs of no longer than 60 days [24–26]. Addition-
ally, research integrating multi-omics (lipidomics, pro-
teomics, and metabolomics) and applying supervised 
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learning mathematical models has managed to accurately 
identify biomarkers for PMIs of up to 3 years [15]. These 
studies suggest that combining ML analysis with PMI-
suitable biomolecules might be a promising strategy for 
advancing accurate PMI prediction. However, research 
on late PMI remains limited, and the identification of 
reliable biomarkers for this timeframe is still in its early 
stages.

In this pilot study, we combine LC–MS/MS-based 
proteomics with machine learning algorithms to differ-
entiate between PMIs of 15 and 20 years. By employing 
supervised learning on protein abundance data derived 
from semitryptic peptides, we identified a minimal set 
of three protein biomarkers that showed high predic-
tive value. Our results suggest that proteomes from tibia 
samples, which are enriched in bone- and matrix-related 
proteins, are better suited for accurate late PMI estima-
tion compared to other bone types. These findings high-
light the potential of integrating proteomics and machine 
learning techniques to advance forensic methodologies 
and improve the accuracy of late PMI prediction.

Methods
Acquisition of biological material
Bone remains were extracted from a total of 15 male indi-
viduals, aged between 20 and 50 years, whose causes of 
death, in general, did not involve significant metabolic 
or infectious diseases. Five of them were obtained from 
cadaveric donations through the “Body Donors to Sci-
ence” program of the Department of Anatomy and Legal 
Medicine at the University of Chile, in accordance with 
Article 146 of Decree 725 of the Chilean Sanitary Code. 
The remaining individuals were sourced from exhuma-
tions at the General Cemetery of Recoleta (Santiago, 
Chile), under Article 38 of Supreme Decree 357/70 
of the General Regulations of Cemeteries. These legal 
provisions empower Chilean universities to use cadav-
eric remains and bone samples from cemeteries for 
research or educational purposes. Furthermore, the cur-
rent research underwent scrutiny by the Bioethics and 
Biosafety Committee of the Faculty of Biological Sciences 
at the University of Concepción, who approved its execu-
tion. Additionally, regarding our experimental design, 
our work adheres to the principles of the Declaration 
of Helsinki. From the cadaveric individuals whose time 
of death was approximately 1  month, a fragment of the 
left fourth rib was extracted and stored for about 1 year 
at − 20  °C, categorizing these samples as representing 
early postmortem interval. On the other hand, indi-
viduals from the cemetery represented late postmortem 
intervals of 15 and 20 years, and fragments of the left rib 
and tibia were extracted and stored in sealed containers 
at room temperature. Thus, this study was conducted 

on a total of 25 bone remains, consisting of 15 rib frag-
ments with PMI < 1, PMI 15, and PMI 20 years, as well as 
10 tibia fragments with PMI 15 and PMI 20 years. Since 
the individuals from the cemetery were retrieved from a 
burial context, an anthropological assessment of sex and 
age biological parameters was performed initially, along 
with the calculation of the Minimum Number of Indi-
viduals (MNI) present, to ascertain the characteristics of 
the sample. The MNI was calculated based on the maxi-
mum number of left and right bones present. Sex estima-
tion was carried out using the Phenice method [27] for 
the coxal bone and the sexual dimorphism parameters 
for the skull [28]. Age estimation involved the analysis of 
changes in the pubic symphysis [29], and changes in the 
auricular surface of the ilium [30].

Preparation of bone samples and protein extraction
For cadaveric remains, rib fragments were washed with 
distilled water, and both the adjacent muscular tissue 
and periosteum were removed using a scalpel. Subse-
quently, they were dried at 37 °C for one hour. Fragments 
of 5 × 5  mm were obtained from the cortical region of 
the body of the rib by a sagittal cut. In the case of skel-
etal remains, the superficial layer of bone was sanded 
to eliminate contaminants. 5 × 5  mm rib fragments and 
20 × 10  mm midshaft tibia were obtained. The obtained 
fragments were disinfected with 5% sodium hypochlo-
rite for 15  min, followed by three 30-min washes with 
nuclease-free water. The fragments were lyophilized for 
7  days and pulverized using a mortar. Protein extrac-
tion was performed from 100  mg of cortical bone 
powder, adding 1.5  mL of 99% 2,2,2-trifluoroethanol 
(TFE) (Sigma Aldrich, 75-89-8) and 1.5  mL of 300  mM 
Tris(hydroxymethyl)aminomethane (Thermo Scientific, 
17926) pH 8.0. The mixture was vortexed and cooled 
on ice for 10 min. Then, it was sonicated for 5 min with 
an 80% amplitude in 10-s pulses. Subsequently, it was 
incubated at 90 °C for 15 min in a dry bath, followed by 
another 10  min of cooling on ice before centrifuging at 
4600×g for 10 min at 4 °C. The extracted proteins in the 
supernatant were quantified using Qubit 4 (Invitrogen), 
and 30  μg of protein were examined by SDS-Page (5% 
stacking gel and 10% running gel).

LC/MS–MS based proteomics
Protein extracts were reduced with 25 mM dithiothreitol 
(Calbiochem®, 3483-12-3) for 20  min at 37  °C. Subse-
quently, they were alkylated with 25 mM iodoacetamide 
(Cytiva, 144-48-9) for 20 min in darkness at room tem-
perature. One volume of 10% 2,2,2-trifluoroethanol 
(Sigma Aldrich, 75-89-8) was added as a digestion 
buffer. The samples were digested using a 1:50 w/w ratio 
of trypsin (Promega, V5111) for 16  h at 37  °C, and the 
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reaction was halted with 0.5% trifluoroacetic acid (Sigma 
Aldrich, 76-05-1). Peptide cleanup was performed using 
MCX columns (OASIS, 186000252) following the manu-
facturer’s instructions.

Finally, vials containing a concentration of 200 ng/µL of 
peptides in 0.1% formic acid (Thermo Scientific, 85171) 
were prepared and injected into a nanoUHPLC nanoE-
lute system (Bruker Daltonics), coupled to a timsTOF Pro 
mass spectrometer (“Trapped Ion Mobility Spectrom-
etry—Quadrupole Time Of Flight Mass Spectrometer,” 
Bruker Daltonics). The liquid chromatography was car-
ried out using an Aurora UHPLC column (25 cm × 75 μm 
ID, 1.6 μm C18, IonOpticks, Australia) at 50  °C. Mobile 
phases A and B were ultrapure water and acetonitrile 
with 0.1%  v/v formic acid, respectively. The percentage 
of B increased linearly from 2 to 17% in 57 min, to 25% 
in an additional 21 min, to 35% in 13 more minutes, and 
then to 85% for a final wash step and re-equilibration. 
Data collection was performed using TimsControl 2.0 
software (Bruker Daltonics) under 10 cycles of PASEF, 
with a mass range of 100–1700  m/z, a capillary ioniza-
tion of 1500 V, and a temperature of 180 °C. The TOF fre-
quency of 10 kHz was executed at a resolution of 40,000 
FWHM. Protein identification was carried out using the 
graphical interface of Fragpipe version 18.0 [31] (https://​
fragp​ipe.​nesvi​lab.​org/) and the MSFragger search engine 
version 3.5 [32]. The amino acid sequences for Homo 
sapiens were obtained from Swiss-Prot (accessed Sep-
tember 2022) and used as the database. The established 
parameters for ion precursor mass tolerance (PMT) and 
fragment ion mass tolerance (FMT) were 0.05  Da and 
20  ppm, respectively. Trypsin enzymatic digestion was 
assumed to be strict, working on trypsin-like peptides, as 
well as semi-specific, with semi-tryptic peptides, with a 
maximum of 2 missed cleavages per peptide and a mini-
mum peptide length of 6 amino acids. Carbamidomethyl-
ation of cysteine was considered a fixed post-translational 
modification, while Oxidation of Methionine (M), N-ter-
minal Acetylation, Deamidation of Asparagine and Glu-
tamine (NQ) were defined as variable post-translational 
modifications. Philosopher version 4.4 [33], specifically 
its Peptideprophet tool, was used to calculate the confi-
dence level, considering peptides at a 0.1% false discovery 
rate. Label-free quantification based on the intensity of 
MS1 precursors for timsTOF data was performed using 
Ionquant version 1.8.0 [34], working with default set-
tings. A protein was considered identified when at least 
one unique peptide was assigned to it.

Proteome characterization
Descriptive analyses were performed using the NumPy 
and Pandas libraries in Python. To identify shared and 
exclusive proteins across different postmortem intervals, 

we employed UpSetPlot [35], considering proteins iden-
tified from both tryptic (tryptic proteins) and semitryp-
tic peptide searches (semitryptic proteins). This analysis 
allowed us to define a set of ‘representative proteins,’ cor-
responding to the union of proteins identified by either 
tryptic proteins or semitryptic proteins. Statistical 
analyses were performed using scipy.stats module from 
SciPy library [36]. Normal distribution was assessed by 
Shapiro–Wilk test. Depending on normality, univari-
ate pairwise comparison was performed using t-test or 
Mann–Whitney U test. Biochemical in-silico profiling 
was performed using biopython modules ExPasy, SeqIO 
and SeqUtils [37].

Machine learning modeling
Both principal component analysis (PCA) and machine 
learning modeling was performed using several scikit-
learn modules [38]. To perform PCA, the protein abun-
dances were first standardized using StandardScaler. 
Subsequently, the PCA analysis was conducted using the 
PCA module from scikit-learn. Cluster search was per-
formed using KMeans from sklearn.cluster library applied 
to the principal components. 2D and 3D plots were per-
formed using Matplotlib or Seaborn libraries [39, 40].

The classification model was constructed using pro-
tein abundance based on decision tree and random for-
est algorithms using the method RandomForestClassifier 
from scikit-learn. The models were refined through a 
hyperparameters search using the datasets separately 
for each bone type (tibia or rib) and protein type (tryptic 
and semitryptic) in late PMI. This search was performed 
using RandomizedSearchCV considering an initial divi-
sion of the samples in 60% training set and 40% test set. 
We defined a grid of hyperparameters tailored to the 
small size of our dataset. The search parameters were set 
as follows: n_estimators: randint(100, 500), max_depth:( 
5, 10, 15, 20), min_samples_split: randint(2, 3), min_sam-
ples_leaf: randint(2, 3), max_features: (‘sqrt’) and using 
accuracy metrics for refit. In particular, we limited the 
maximum depth of the trees to 20, as well as the mini-
mum number of samples required for a split and per leaf. 
Additionally, we used the square root of the total num-
ber of features to select features at each node, a com-
monly recommended parameter for small datasets. This 
ensures that not all features are considered at each split, 
increasing the diversity of the trees and enhancing the 
model’s ability to generalize. The identified hyperpa-
rameters were then used to retrain the model. To assess 
overfitting, we performed 100 iterations of this retrain-
ing process, randomly changing the training and test sets 
in each iteration. Performance metrics, such as accuracy 
and F1-score, were used for evaluation. For tibia, the 
best hyperparameters selected were: n_estimators:  158, 

https://fragpipe.nesvilab.org/
https://fragpipe.nesvilab.org/
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max_depth:  30, min_samples_leaf: 1, min_samples_
split:2, max_features:  None.

For tibia, tryptic and semitryptic proteins, the final 
hyperparameters found were: max_depth: 15, max_fea-
tures: sqrt, min_samples_leaf: 2, min_samples_split: 2, 
n_estimators: 448. For rib’s semitryptic proteins, ‘max_
depth’: 15, ‘max_features’: ‘sqrt’, ‘min_samples_leaf ’: 2, 
‘min_samples_split’: 2, ‘n_estimators’: 448. For rib’s tryp-
tic proteins, ‘max_depth’: 20, ‘max_features’: ‘sqrt’, ‘min_
samples_leaf ’: 2, ‘min_samples_split’: 2, ‘n_estimators’: 
288.

The identified hyperparameters were then used to 
retrain the model. To assess overfitting, we performed 
100 iterations of this retraining process, randomly 
changing the training (80%) and test (20%) sets in each 
iteration. Performance metrics, such as accuracy and 
F1-score, were used for evaluation. Protein importance 
for model’s predictive accuracy was calculated by the 
Mean Decrease in Gini (MDG) and extracted using the 
attribute “.feature_importances_”.

Subsequently, to improve the model’s performance and 
identify the most important proteins, we conducted a 
supervised variable screening by combining importance 

scores and SHapley Additive Explanations (SHAP) val-
ues. SHAP values were calculated across the one hundred 
iterations using the shap python library [41] and their 
distributions were visualized by violin plots. Variable 
screening was conducted iteratively eliminating proteins 
that were not informative for the model (importance 
score) or important for model’s output (SHAP). First, we 
select all proteins displaying greater than 4% importance 
score. Then, based on SHAP values distributions, we 
excluded proteins with median values near zero and neg-
ative minimum values. Once a protein set was defined, 
the model was retrained with 100 iterations, and its per-
formance was evaluated in each iteration.

Results
Early and late PMI bone acquisition and protein extraction
Two bone pieces were studied: ribs (n = 5) and tibia 
(n = 5) at a late PMI of 15 (PMI15) and 20 years (PMI20), 
as detailed in Table  1. Additionally, we included an 
early PMI of < 1  year (PMI1) using only rib fragments 
acquired from male cadaveric donors (n = 5). Pro-
teins were extracted from 100  mg cortical bone pow-
der following an in-house standardized protocol that 

Table 1  Detailed list and description of bone samples collected for the study

Sample Individual Bone Context Age PMI Storage Cause of death

MD4C_1 1C Rib Cadaveric 31 < 1 year Frozen Cardiac stab wound

MD4C_2 2C Rib Cadaveric 40 < 1 year Frozen Abdomino-pelvic trauma by firearm projectile

MD4C_3 3C Rib Cadaveric 21 < 1 year Frozen Firearm projectile trauma

MD4C_4 4C Rib Cadaveric 22 < 1 year Frozen Firearm projectile trauma (thorax)

MD4C_5 5C Rib Cadaveric 48 < 1 year Frozen Firearm projectile trauma (cervical)

MR1_1C 1R Rib Cemetery 35 15 years Room temperature Undetermined

MR1_1T Tibia

MR1_2C 2R Rib Cemetery 35 15 years Room temperature Cranioencephalic and facial trauma

MR1_2T Tibia

MR1_3C 3R Rib Cemetery 43 15 years Room temperature Hemorrhagic stroke

MR1_3T Tibia

MR1_4C 4R Rib Cemetery 43 15 years Room temperature Undetermined

MR1_4T Tibia

MR1_7C 7R Rib Cemetery 49 15 years Room temperature Acute subdural hematoma

MR1_7T Tibia

MR2_9C 9R Rib Cemetery 30 20 years Room temperature Polytrauma due to road traffic accidents

MR2_9T Tibia

MR2_11C 11R Rib Cemetery 39 20 years Room temperature Acute posthemorrhagic anemia

MR2_11T Tibia

MR2_12C 12R Rib Cemetery 42 20 years Room temperature Acute pulmonary edema

MR2_12T Tibia

MR2_14C 14R Rib Cemetery 47 20 years Room temperature Asphyxia by hanging

MR2_14T Tibia

MR2_15C 15R Rib Cemetery 49 20 years Room temperature Cardiorespiratory arrest

MR2_15T Tibia
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allowed us to maximize the protein yield for bone pro-
teomics (see “Methods”). Ribs samples showed on aver-
age 1.13 ± 0.15  mg (PMI1), 0.63 ± 0.07  mg (PMI15), 
and 0.82 ± 0.29  mg (PMI20) of total extracted pro-
tein. Tibia samples yielded 0.72 ± 0.07  mg (PMI15) and 
0.78 ± 0.17  mg (PMI20). The amount of total protein 
obtained highlights the difficulty of protein extraction 
from bone tissue and pinpoints that late PMIs yield less 
amounts of extracted proteins.

Proteome characterization of ribs and tibia remains
Samples were profiled using LC–MS/MS, and the pro-
teome of each sample identified through bioinformatics 
analysis. The protein identification was carried out using 
two approaches; (i) a trypsin-specific search, commonly 
employed in proteomics, generating a proteome referred 
to as “tryptic proteins or proteome”, and (ii) a nonspecific 
search, generating a proteome referred to as “semitryp-
tic proteins or proteome”. The semitryptic search was 
included in our study to account for the expected natural 
protein degradation in the samples, as the tryptic search 
could result in the loss of information and bias in abun-
dance estimation. Protein abundances were calculated 
separately for both tryptic and semitryptic proteins. No 
significant differences were observed in the total number 
of proteins identified per PMI between tryptic and semit-
ryptic proteome (Supplementary Table 1). However, early 
PMIs exhibited a statistically greater number of proteins 
compared to late PMIs within the same proteome type 
(Supplementary Tables  2 and 3). As shown in Fig.  1A, 
for tryptic proteomes, we identified a median of 27 pro-
teins in PMI1, 17 proteins in PMI15 rib (PMI15C), 13 
proteins in PMI15 tibia (PMI15T), 15 proteins in PMI20 
rib (PMI20C), and 15 proteins in PMI20 tibia (PMI20T). 
Similar results were observed for identified proteins in 
semitryptic proteomes (Fig.  1B). To ensure analytical 
consistency, we established the proteome of each condi-
tion as the set of proteins consistently identified across 
all five biological replicates. Through this approach of 
consistency filtering, the tryptic proteomes comprised 14 
proteins in PMI1, 8 proteins in PMI15 rib (PMI15C), 5 
proteins in PMI15 tibia (PMI15T), 9 proteins in PMI20 
rib (PMI20C), and 6 proteins in PMI20 tibia (PMI20T) 
as listed in Supplementary Table  4. Similarly, the semi-
tryptic proteomes included 18 proteins in PMI1, 11 
proteins in PMI15C, 7 proteins in PMI15T, 11 proteins 
in PMI20C, and 6 proteins in PMI20T, detailed in Sup-
plementary Table 5. The proteome analysis among PMIs 
revealed that most proteins are shared between two or 
more PMIs (Fig.  1C, D). Specifically, only 4 and 8 pro-
teins were uniquely identified in PMI1 for tryptic and 
semitryptic proteins, respectively.

To explore whether tryptic and semitryptic proteomes 
exhibit significant differences, we defined a set of “rep-
resentative proteins” that included all proteins identi-
fied by either tryptic or semitryptic searches across all 
PMI samples (Fig.  1C, D). A total of 16 representative 
proteins were identified using tryptic peptides, while 21 
were identified using semitryptic peptides. These rep-
resentative proteins included plasma proteins (ALBU, 
THRB, FETUA), hemoglobin (HBA, HBB), several col-
lagens and collagen-related proteins (COL1A1, COL1A2, 
COL3A1, PGS1), keratins (K2C4, K1C10, K1C13), and 
bone matrix-related proteins (SEMG1, S10AB, S10A9), 
confirming the bone-specific signature of the obtained 
proteomes.

Recent hypotheses suggest that proteins persisting 
in late PMIs (> 12  years) often display higher molecular 
weights and are enriched in acidic amino acids [21]. To 
investigate this, we grouped proteomes by early (PMI1) 
and late PMI stages (PMI15 and PMI20), subtracting pro-
teins present in late PMIs from the early set. Biochemi-
cal parameters, such as molecular weight and amino acid 
composition (acidic and basic), were analyzed (Fig.  1E–
G). We observed that proteins in late PMIs, indeed, 
displayed higher molecular weights (Fig. 1E and Supple-
mentary Table  6) and showed significant enrichment in 
acidic amino acids (Fig. 1F and Supplementary Table 7). 
Conversely, the early PMI proteome, identified by both 
peptide types, was enriched in basic amino acids (Fig. 1G 
and Supplementary Table 8).

These findings collectively demonstrate that our bone 
proteomes exhibit distinct identities and biochemical 
properties dependent on PMI. This led us to question 
whether these properties could be predictive of PMI in 
skeletal remains.

Unveiling global proteomic patterns describing tibia 
and rib remains
In our quest to elucidate global patterns within prot-
eomic abundance that could potentially inform the PMI, 
Principal Component Analysis (PCA) was employed 
as an analytical tool. This statistical method facilitated 
the effective visualization of major sources of variation 
within the data, conducted without prior assumptions 
about sample identity (unsupervised learning). These 
analyses were coupled with clustering analysis using 
K-means algorithm for enhancing visualization of sample 
aggregation through the principal components (PC) as 
shown in Fig. 2. Our results indicated that protein abun-
dance, calculated based on both tryptic and semitryptic 
peptides, give rise to similar aggregation and clustering 
results (Fig. 2A, B). Notably, more than 70% of the varia-
bility is explained by the first three principal components 
(PC1, PC2 and PC3), with PC1 accounting for 48% of the 
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variation, thereby driving the most significant source of 
variability among samples (Supplementary Table  9 and 
10). Surprisingly, we observed that samples do not aggre-
gate by PMI values; instead, it is the type of bone piece 
(tibia or rib) that drives the clustering (Fig.  2A, B, PC1 
in both plots). In both scenarios, PMI1 disaggregates 

from late PMI ribs, indicating a distinct proteomic pat-
tern. Subsequently, we assessed the variable’s loadings 
to understand the extent to which each protein influ-
ences the observed clustering (Fig.  2C, D). We found 
that collagen-related proteins (CO1A1, CO1A2, CO3A1, 
and PGS1) and the plasma protein THRB influence late 

Fig. 1  Characterization of proteomes in bone remains. A Protein identification using tryptic search. B Protein identification using semitryptic 
search. C Comparison of proteomes by PMI and bone segments for proteins identified through tryptic search. D Comparison of proteomes 
by PMI and bone segments for proteins identified through semitryptic search. E In silico characterization of molecular weight distribution 
between PMI < 1 year and PMI > 15 years. F Percentage of acidic amino acids in proteins from PMI < 1 year and PMI > 15 years. G Percentage of basic 
amino acids in proteins from PMI < 1 year and PMI > 15 years
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PMI bone piece aggregation. In contrast, keratins (K2C1, 
K1C10, K1C13, K2C4), histones (H14, H10, H12), hemo-
globins (HBA, HBB), G3P, and bone matrix-related pro-
teins (SEMG1, S10AB, S10A9) are characteristic of early 
PMI proteomes. Concurrently, we also performed multi-
ple correspondence analysis (MCA) to evaluate whether 

proteome diversity (presence or absence of proteins) 
could inform PMI, but this approach did not yield con-
clusive results (Supplementary Figure  1). These findings 
suggest that late PMI stages cannot be directly distin-
guished by PCA, as the bone type has a greater influ-
ence on the proteome than the differences in PMI do (15 

Fig. 2  Global visualization of proteomes through principal component analysis. A Three-dimensional visualization of the first three principal 
components for proteins identified through tryptic search. B Three-dimensional visualization of the first three principal components for proteins 
identified through semitryptic search. C Variable loadings for the tryptic search. D Variable loadings for the semitryptic search
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and 20  years). Additionally, analysis of protein loadings 
helps to differentiate between early and late PMI stages, 
although it does not provide insights into specific dif-
ferences within late PMIs. Based on these insights, we 
decided to apply ML modeling as an alternative approach 
to integrate and learn about intrinsic differences between 
PMI15 and PMI20, which may allow us to distinguish 
PMI within a 5-year range.

Machine learning supervised training to accurately predict 
PMI
We opted for a Random Forest model, an ensemble of 
decision trees, as our aim was to predict PMI catego-
ries. Random Forest is recognized as a robust model for 
small datasets due to its ability to prevent overfitting by 
combining multiple decision trees, each built on different 
subsets of data and variables.

Initially, we focused on modeling late PMI for each 
bone type—rib and tibia, independently—with the goal of 
training a model capable of discerning differences within 
a 5-year PMI range and identifying critical proteins for 
classification. Once the model was trained and crucial 
parameters were established (refer to Methods section), 
we conducted 100 iterations, resampling the training and 
test sets each time. This process ensured that all samples 
were included in each set at least once and allowed us to 
evaluate the model’s consistency across different data-
sets. These iterations were critical for detecting poten-
tial overfitting, as significant variations in performance 
metrics such as accuracy and F1-score between training 
and test sets indicated the model’s inability to generalize 
beyond the training data.

Initial modeling with abundance of full set representa-
tive proteins consistently showed better performance for 
semitryptic proteins in tibia samples (Fig. 3A) compared 
to tryptic peptides across iterations (Supplementary Fig-
ure 2). However, model accuracy oscillated between 100 
and 50%, with even lower F1-scores in some iterations 
(Fig. 3A).

Subsequently, to enhance the model’s performance, we 
opted to eliminate proteins (referred to as “variables”) 
that were not informative for the model’s training. Ran-
dom Forest provides a measure of how informative each 
protein is through the “importance score”. Addition-
ally, we assessed the contribution of each protein to the 
model’s output by calculating SHAP values. An iterative 
selection of the most informative proteins was conducted 
based on their importance scores and SHAP values. This 
combined approach enabled the elimination of unin-
formative or noisy variables, while simultaneously iden-
tifying key proteins that contribute to PMI prediction, 
which aligns with one of the objectives of our study—
identifying potential biomarkers for this task.

For the supervised variable screening, the average 
importance score was calculated from the 100 iterations 
performed with the full set of representative proteins. 
As shown in Fig. 3B, for semitryptic proteins from tibia 
proteomes, the proteins PGS1, K1C13, K2C1, FETUA, 
CO3A1, S10A8, SEMG1, THRB, CO1A1, CO1A2, and 
K2C4 displayed importance scores greater than 4%. 
These eleven proteins were selected for model retraining; 
however, performance did not improve (Fig. 3C). SHAP 
distributions for this protein set were plotted for each 
PMI (Fig. 3D, E). Proteins were then gradually eliminated 
based on their SHAP values, and model performance 
was evaluated at each step (Supplementary Figure  3), 
until optimal and sustained accuracy and F1-scores were 
achieved with the minimal set of proteins. The supervised 
variable screening successfully improved the model’s per-
formance, resulting in a consistent accuracy and F1-score 
of 100% across all iterations (Fig.  3F). The minimal set 
of proteins sufficient to classify samples from 15- and 
20-year PMI was found to be PGS1, K1C13, and CO3A1.

Interestingly, the refinement process using tryptic 
proteins did not lead to steady improvements in model 
performance (Supplementary Figure  2). These findings 
suggest that, in a forensic context, protein abundance 
estimated from the semitryptic search more accurately 
reflects bone decomposition than abundance obtained 
through tryptic search.

Similarly, rib samples modeling consistently demon-
strated poor performance for both tryptic proteomes 
(Supplementary Figure  4) and semitryptic proteomes 
(Supplementary Figure  5). These findings led to the 
exclusion of late PMI rib data and tibia tryptic peptides 
from downstream analysis. At the same time, these 
results demonstrate that tibia bone and semitryptic pro-
tein abundance seems to be reliable predictors for late 
PMI.

Subsequently, we integrated PMI1 samples into the late 
PMI tibia modeling to assess the stability performance 
with an additional PMI category. The model maintained 
100% accuracy across iterations, effectively predicting 
PMI using semitryptic abundances of K1C13, PGS1, and 
CO3A1 (Fig. 4A, B). Thus, these three proteins constitute 
potential biomarkers for PMI prediction.

To further explore how the model has learned to dif-
ferentiate PMIs based on the expression patterns of 
the critical proteins—K1C13, PGS1, and CO3A1—we 
analyzed the distribution of SHAP values across the 
100 iterations of our final model for these potential 
biomarkers (Fig.  4C–E). At this point, the SHAP val-
ues reflect the contribution of each protein’s abun-
dance to the model’s classification decisions. For 
instance, K1C13 and CO3A1 show a greater contribu-
tion to the classification of PMI1 (Fig. 4C). In contrast, 
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PMI15 classification integrates expression pattern of 
K1C13, CO3A1, and—to a slightly lesser extent—PGS1 
(Fig. 4D). Meanwhile, for PMI20, only K1C13 and PGS1 
are critical (Fig.  4E). The semitryptic abundances of 

these proteins across the different PMIs are provided in 
Fig.  4F–H, illustrating the specific expression patterns 
that the model relies on for accurate classification. This 
analysis clarifies the quantitative shifts in protein abun-
dance required for the model to differentiate between 

Fig. 3  Model optimization via variable screening for tibia late PMI using semitryptic proteins. A Initial model performance using the identified 
hyperparameters and the complete set of representative proteins. B Importance score for full set of proteins in model A. C Model performance 
after selecting 11 proteins with an importance score greater than 4%. Proteins were then iteratively removed based on their SHAP values. D 
SHAP value distributions for the most important proteins contributing to the classification of PMI 15. E SHAP value distributions for the most 
important proteins contributing to the classification of PMI 20. F Final model performance after reducing the set to three key proteins: PGS1, K1C13, 
and CO3A1
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PMI categories, further supporting K1C13, CO3A1, 
and PGS1 as potential biomarkers for PMI estimation.

Discussion
This study provides valuable insights into the estimation 
of late postmortem interval (PMI), addressing three key 
aspects: (i) the importance of selecting the appropriate 
bone for proteomic analysis, with the tibia outperforming 
the ribs; (ii) the advantage of using a semitryptic search 
to enhance protein identification in degraded samples; 
and (iii) the value of supervised machine learning (ML) 

techniques, particularly Random Forest, for predicting 
shorter intervals within late PMI. These findings under-
score the potential of combining proteomics and ML to 
improve the accuracy of forensic methodologies, while 
also highlighting the limitations of our study, including 
the small sample size and experimental design.

Selecting the appropriate bone for proteomic analysis 
significantly influenced the accuracy of PMI predictions, 
with tibia outperforming ribs in terms of proteome sta-
bility and predictive power. The tibia, a long and highly 
mineralized bone, exhibited greater resistance to protein 
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degradation compared to the rib, a flat and highly vascu-
larized bone involved in hematopoiesis [42]. This obser-
vation aligns with previous findings that emphasize the 
tibia’s structural compactness and lower vascularization, 
which protect its proteome from rapid degradation [43]. 
Studies by Mickleburg et al. also highlight how bone type 
affects proteome decay, showing that the iliac crest (a flat 
bone like the rib) is more susceptible to degradation than 
the tibia in early PMI stages [20]. Our results support 
this, with rib samples showing greater proteome diver-
sity at PMI1 but a marked decline by PMI15 and PMI20, 
likely due to their higher exposure to environmental fac-
tors such as microbial infiltration [20, 44, 45].

In contrast, the tibia proteomes exhibited lower diver-
sity, particularly at later PMIs, a finding consistent with 
studies showing that tibia proteins, particularly matrix-
related proteins, are more resistant to degradation. This 
lower diversity does not imply a lack of predictive power; 
rather, it highlights the importance of focusing on pro-
teins that are more stable over time, particularly those 
bound to the bone matrix. Our filtering criteria, which 
focused on proteins consistently identified across all rep-
licates by condition, may have further reduced the diver-
sity of tibia proteomes previously reported [18–20], but 
ensured consistency and reliability in our analysis. This is 
crucial for developing reproducible forensic tools, as pro-
tein degradation is non-linear and varies depending on 
bone type and external conditions [21].

Other critical methodological decision in this study 
was the use of a semitryptic search [46] to enhance pro-
tein identification in degraded samples. While most 
studies rely on tryptic-specific searches for proteom-
ics [18–20], our use of semitryptic searches allowed for 
the identification of a larger set of proteins and esti-
mate more accurate abundance, particularly in samples 
where protein degradation is expected, such as those 
from late PMI. Semitryptic peptides, which only par-
tially conform to trypsin cleavage patterns, increase the 
sensitivity of protein discovery by capturing degradation 
fragments that would be missed in tryptic-only searches. 
This broader search strategy not only enhanced protein 
detection but also improved predictive accuracy in our 
models. In tibia samples, the use of semitryptic peptides 
yielded the most accurate PMI predictions, underscoring 
their value in forensic proteomics.

On the other hand, the integration of supervised ML 
modeling, particularly Random Forest, proved essential 
for differentiating between late PMI intervals. Random 
Forest models, which aggregate decision trees based 
on different subsets of data and variables [47], are well-
suited to handle the non-linear relationships between 
protein abundance and PMI. In our study, the use of 
Random Forest allowed us to identify a minimal set of 

three key proteins (K1C13, PGS1, and CO3A1) that con-
sistently distinguished between PMIs of 15 and 20 years 
with 100% accuracy across 100 iterations in tibia sam-
ples. Unlike unsupervised methods previously use for 
PMI prediction such as Principal Component Analysis 
(PCA) [18–21], which is limited to data visualization and 
dimensionality reduction [48], Random Forest provides 
robust predictive power, making it ideal for the complex, 
multi-dimensional data encountered in bone proteomics.

Our findings align with previous studies applying ML 
models to early PMI estimation, such as the work by Pri-
eto-Bonete et  al. [21], but extend these methods to late 
PMI. Prieto-Bonete et  al. identified proteins that distin-
guish between PMIs shorter and greater than 12  years, 
focusing on bone structural proteins and exclud-
ing blood-related proteins. In contrast, our approach 
included a wider range of proteins, including those 
related to blood and inflammation (e.g., S10A8, S10A9), 
which may play important roles in bone turnover and 
postmortem protein stability [49, 50]. The inclusion of 
these proteins, alongside collagens and other matrix-
related proteins (e.g., CO3A1, K1C13, CO1A2, FETUA), 
proved critical for improving the accuracy of our model. 
Additionally, the biochemical profiles of proteins in our 
study, characterized by higher molecular weights and 
enrichment in acidic amino acids, corroborate previous 
findings that suggest these characteristics are associated 
with late PMI [21, 22].

Finally, while our study demonstrates the potential 
of combining proteomics with ML for late PMI predic-
tion, several limitations must be acknowledged. The 
small sample size, particularly with regard to tibia and 
rib samples, restricts the generalizability of our findings. 
Additionally, our study focused on a narrow PMI range 
(15–20 years), limiting the scope of the conclusions that 
can be drawn. Future research should aim to expand the 
sample size and investigate a broader range of PMIs, as 
well as include other bone types to further refine and val-
idate the identified biomarkers. Despite these limitations, 
this study serves as a proof of concept, highlighting the 
feasibility of integrating proteomics and ML for forensic 
applications. Our findings lay the groundwork for future 
research aimed at developing standardized methodolo-
gies for late PMI estimation in forensic science.

Conclusions
Despite its limitations in sample size and the specific 
PMI range studied, this research provides a significant 
contribution to the field of predictive forensics by imple-
menting novel experimental approaches that have not 
been widely explored. Within our experimental frame-
work, we conclude that the use of semitryptic peptides 
for protein identification in the midshaft tibia, combined 
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with machine learning techniques, significantly improves 
PMI prediction accuracy. However, to advance toward 
a generalized methodology for PMI estimation, future 
research should focus on more comprehensive profiling. 
This should include a broader range of late PMIs, various 
bone segments, and an exploration of different deposition 
contexts. Such efforts will not only deepen our under-
standing of PMI estimation but also move us toward the 
standardization of forensic proteomics practices.
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